

					Pri	intec	l Pa	ge: 1	of 2	,
				Sub	ject	Co	de: I	KCS	8055	,
Roll No:										

BTECH (SEM V) THEORY EXAMINATION 2023-24 MACHINE LEARNING TECHNIQUES

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

<u>1.</u>	Attempt all questions in brief.	2 x 10	= 20
a.	Discuss the important objectives of Machine Learning.	2	1
b.	Discuss overfitting and underfitting situation in decision tree learning.	2	1
c.	Discuss support vectors in SVM.	2	2
d.	What is gradient descent delta rule?	2	2
e.	Explain Case-based learning.	2	3
f.	For which problem decision tree is best suitable.	2	3
g.	Define the term ANN, and CNN.	2	4
h.	Differentiate between Lazy and Eager Learning.	2	4
i.	Comparison of purely analytical and purely inductive learning.	2	5
j.	Define the term Offspring, Chromosome and Genes are used in GA.	2	5

SECTION B

•	A 44 4	. 7	C /1	C 11 ·
2.	Attempt	anv <i>three</i>	of the	following:

10		2		Λ
10	X	ე_=	₹3	V

a.	Compare Supervised and Unsupervised Learning Techniques with	10)1
	examples.	ベレ	
b.	Explain Maximum Likelihood and Least Squared Error Hypothesis with	10	2
	example.		
c.	Compare and contrast Information Gain, Gain Ratio, and Gini Index in	10	3
	detail.		
d.	Explain the different layers used in convolutional neural network with	10	4
	suitable examples.		
e.	Discuss the applications of reinforcement learning. In which problems	10	5
	reinforcement learning is used?		

SECTION C

3. Attempt any *one* part of the following:

$10 \times 1 = 10$

a.	Compare regression, classification and clustering in machine learning	10	1
	along with suitable real life applications.		
b.	Explain the "Concept Learning" Task Giving an example.	10	1

4. Attempt any *one* part of the following:

$10 \times 1 = 10$

a.	Explain hyperplane (decision boundary) in SVM. Categorize various	10	2
	popular kernels associated with SVM.		
b.	Differentiate between Naïve Bayes classifier and Bayesian belief	10	2
	networks. Give an application of Bayesian belief networks.		

5. Attempt any *one* part of the following:

a.	Discuss Decision Tree and explain its working in detail.	10	3
b.	Demonstrate K-Nearest Neighbors algorithm for classification with the	10	3
	help of an example.		

				Sub	ject	Co	de: I	KCS	055	,
Roll No:										

Printed Page: 2 of 2

BTECH (SEM V) THEORY EXAMINATION 2023-24 MACHINE LEARNING TECHNIQUES

TIME: 3 HRS M.MARKS: 100

6.	Attempt any <i>one</i> part of the following:	10 x 1 =	= 10
a.	Illustrate backpropagation algorithm by assuming the training rules for	10	4
	output unit weights and Hidden Unit weights.		
b.	Write short notes on Probably Approximately Correct (PAC) learning	10	4
	model.		

7.	Attempt any one part of the following:	10 x 1 =	= 10
a.	Explain Q-learning with its key terms, key feature and elements. Discuss	10	5
	its applications used in real life.		
b.	Define the term Genetic Algorithm. Discuss the working of Genetic	10	5
	algorithm with the help of flowchart.		

OP24DP1 091 02024, 3:21:25 210:2125 31.01:2024, 3:21:25